Document Version: 0.03

ADCS - An ADC Security Layer

Rationale

The Advanced Direct Connect (ADC) protocol is a plain-text communications protocol whose primary
applications are chat and file-transfer. The protocol uses a client-server topology to create hubs
whereby users may connect and interact. The protocol also enables two users on a common hub to
establish a client-server connection, primarily for file-transfer. Thus, although commonly referred to
as a peer-to-peer protocol, the basic network design is not a peer-to-peer network’.

There has been concern in the ADC community, for some time, around the fact that the existing
protocol is insecure. Specifically, the following issues have been identified:
- Communication is vulnerable to eavesdropping by unknown third-parties.
- The client cannot provide assurance that the hub it connects to is that which it intended to.
- The protocol does not provide a registration method. Password-based registration schemes
currently transmit passwords to the server in plain-text in a hub-software-specific manner.
- The hub authentication method is potentially insecure i.e. the hub cannot verify that a
connection has not been hijacked’ in the establishment phase, or initiated by a client
impersonating the registered user’.

These issues come to the fore on the Internet; however, even on a local area network (LAN) these
issues may all be present, particularly if a network endpoint is connected to an unsecured wireless
network.

Issues and Models

Trust Models
There are two primary trust models in use today: public key infrastructure and web of trust. A trust

model is necessary to authenticate other users in a network and validate the credentials they
provide.

Public Key Infrastructure (PKI)
PKl is a hierarchical model, which utilises a chain of trusted third parties, known as certificate

authorities (CAs). A Root CA is trusted by all below it in the certificate hierarchy; likewise, a CA is
trusted by all below it. In the diagram below, User Z does not directly trust the identity of User X;
however, User Z does trust the Root CA via CA B. User X’s certificate is signed by CA a, which is in
turn signed by the Root CA; thus, due to the shared trust in the hierarchy, User Z will trust User X.
Likewise, User X will trust User Y’s certificate, because it was signed by the trusted third party, CA a.

! StrongDC++ contains a distributed hash table (DHT) implementation which seeks to add a peer-to-peer layer
to the network. It utilises UDP packets. See http://www.adcportal.com/wiki/index.php/StrongDC%2B%2B_DHT
2 Connection hijacking is known as a man-in-the-middle (MITM) attack.

* A rogue hub operator may harvest a user’s private id and client id for the purposes of connecting to a private
hub which the user is a member of.



Document Version: 0.03

Root CA

CA a

]
I |

Web of Trust
A Web of Trust is a distributed trust architecture, which has no reliance on a central authority. The

system acts on the concept of trusted introducers, i.e. another user which the user trusts to identify
a third party. If User X trusts User Z, but does not know User Y, then User Y may become trusted to
User X if User Z introduces User Y as a known party. This system can be likened to the system in
human relationships whereby one person vouches for the good standing of another person within
the community. A common application of this model is Pretty Good Privacy (PGP).

User X

User Z Ll User Y

Comments
As stated previously, an ADC network operates in a client-server topology. User X will trust the hub

when it informs it that User Y is a member of the hub. Many hubs also introduce the concept of
operators, which are trusted managers of the hub, in the absence of the hub owner. Operators have
significant powers beyond those of a normal user. ADC networks are thus no strangers to
hierarchical trust models.

In this existing trust model, a client trusts the hub in regards to the identity of users. It is a natural
extension of this model for the hub to continue this role in a PKI model whereby the hub asserts the
identity of other users via the issuance of digital certificates.

The Web of Trust model relates well to that in which people are invited to join private networks.
However, in an ADC network, the client only maintains constant communication with a hub. This



Document Version: 0.03

means that a hub should be the party which vouches for the identity of all parties connected to the
hub.

The hub is free to delegate the power to initiate the issuance of a certificate to its operators;
however, although allowing an operator to issue certificates may be beneficial (you can see which
operator registered a user), it does introduce additional complexity, and it is simpler for the hub to
authorise the operator to prompt the hub to issue a certificate in the hub’s name.

Secure and Insecure Clients
The use of secure sessions is widely known to place an extra resource overheard on connecting

parties. Although the most resource-intensive ciphers, asymmetric encryption, are only used during
the session handshake, symmetric encryption is still more resource-intensive than no encryption. It
is therefore important to note that an ADCS-only hub will be constrained to a smaller size than a
non-ADCS hub running on the same hub-software.

Hybrid Hubs
A hub which allows both ADCS and non-ADCS connections, a hybrid hub, may hold an acceptable

level of security for some situations. The key issues are what is being protected through the use of
ADCS from the hub owner’s perspective, and what level of security does ADCS imply to end users?

A hub owner may potentially wish to secure all client-hub aspects of the ADC protocol, including:
- Public chat,
- Private chat,
- User information,
- Search requests,
- Authentication, and
- Feature negotiation.

Since an ADC network involves interaction with other clients, and the level of security is only as
strong as the weakest link in each interaction, the hub can only certify that certain interactions are
secure on a hybrid hub. For an ADCS user, feature negotiation and authentication, with the hub, will
be secure. The hub may be able to advise the client that a private chat conversation with another
user is secure (i.e. unreadable by third parties), if both users are connected via secure channels;
however, the notification to the user is dependent on client support, it is not implicit in the
architecture of the hub (a client may also choose to negotiate a secure channel with a client,
specifically for a private conversation). Public chat on a hybrid hub does not offer privacy, since
insecure plain-text connections are allowed. Likewise, search requests and user information are not
private to only the users of the hybrid hub.

Why Not Hybrid Hubs?
In summary, a hybrid hub may reduce the impact of ADCS-induced resource limitations; however, it

does not produce a hub which is secure for all communications, and client support is necessary to
inform the user appropriately when insecure channels exist on the hub. The usability factor is likely
to inhibit such hubs; thus, it is proposed that such a model be disallowed by the protocol, as safely
handling the situation places an onus on client developers to inform the user. If a high user count is
desirable, then a non-ADCS hub should be used in the absence of more capable computer hardware.



Document Version: 0.03

If, however, the hub owner desires a secure hub, then its size should be kept small. This follows the
common sense need to keep secrets between a chosen few to reduce the chance of information
leakage or infiltration.

Implementation
This specification seeks to address the above concerns through the use of the Transport Layer

Security (TLS) protocol v1.2*. TLS is used by a number of Internet protocols to establish endpoint
authentication and communication confidentiality through the use of cryptography.

Connection Approach
There are two approaches to implementing TLS in application protocols (see Appendix | for further

discussion of these approaches):

- Separate ports: two ports are used by the protocol, one for non-secure sessions, and one for
secure sessions. The most well known use of this method is HTTP/HTTPS which use ports 80
and 443 respectively. This has a severe limitation in that an existing network cannot upgrade
to a secure network on the same port.

- Upward negotiation: this method is known as the ‘TLS upgrade’ method, and requires only
one port. The client and hub negotiate feature support and, when both parties support
secure sessions and at least one party requires it, a TLS handshake is commenced. It is used
by IMAP, POP3 and SMTP, among others”.

The approach which is used shall depend on the goals of the hub owner. If the hub owner seeks to
migrate an existing hub to a secure protocol, and is not concerned about the potential for the
protocol to be blocked by service providers or detected by unknown third-parties, then the upward
negotiation method is appropriate as there is no need to obfuscate the existence of the protocol,
users will not need to update the address of the hub in their clients, and users of client software
which does not support the secure protocol may be informed and refused a connection in a graceful
manner. However, if a hub owner wishes to establish a new secure hub, or is concerned about
protocol detection and/or blocking, then the secure session should be initiated prior to any protocol-
specific messages being transmitted. For a new hub, the hub address should be specified with the
‘adcs’ URL scheme. For an existing hub which does not use upward negotiation, connection attempts
which do not commence with a TLS handshake should be blocked.

This is summarised in the table below.

Situation Use upward Use ADCS
negotiation prefix

Existing hub
Obfuscation unnecessary

x
x

Obfuscation necessary
New hub x v

* See http://tools.ietf.org/html/rfc5246 or http://en.wikipedia.org/wiki/Transport_Layer_Security
> See http://tools.ietf.org/html/rfc2595 and http://tools.ietf.org/html/rfc3207



Document Version: 0.03

Situational Considerations
TLS provides two levels of authentication: server authentication and mutual authentication. The

level used will depend on the issues the hub owner is trying to solve. Note that; whilst both levels
will result in an encrypted session, mutual authentication provides a higher level of assurance as to
the identity of the parties.

Mutual
authentication

Server
authentication

Server Authentication
In this scenario, only the server is authentication; that is, the client is aware of the server’s identity,

however the client remains unauthenticated and anonymous. The authentication of the server is
performed via the server’s digital certificate.

Gaining a digital certificate may pose an issue in ADC networks, because a certificate signed by a
certification authority (CA) costs money, which must be borne by the hub owner. Since hub owners
are unlikely to find a certificate authority run by the ADC community to be an acceptable substitute,
it will in most cases be necessary for a hub owner to self-sign their digital certificate. Thus, hub
software should support the use of a certificate signed by a certification authority, but also allow a
hub owner to generate a self-signed certificate.

Verification of Self-Signed Server Certificates
A self-signed server certificate raises the issue of how a client can trust that the hub is who they say

they are. Since anybody can generate a self-signed certificate, an additional verification method is
necessary to ensure the client is connecting to the hub which they believe they are connecting to.
The proposed KeyPrint extension for ADC® presents a solution to this. When a hub address is given to
a user, it is appended with a cryptographic hash of the server’s public key, which the client software
may then use to verify that the certificate it received from the server does indeed belong to the
server. Specifically, the URL contains a query string with a parameter ‘kp’, which is similar to the ‘xt’

6 KeyPrint extension: http://www.adcportal.com/wiki/index.php/KEYP



Document Version: 0.03

parameter of the Magnet URI scheme’®, except that the hash is the base32-encoded hash of the
server’s public key i.e.:
kp=urn:algorithm:base32(hash)
For the case where the hash function is Tiger, this would appear as:
adc://myhub.com:1234/?kp=urn:tiger:USNVXMWXL5MSQHRAITYJITVFY75RUGIDCBQ3BZQ
The same query string is used for an ‘adcs’ URL scheme.

Mutual Authentication
In a mutual authentication scenario, all the same facts in server authentication apply; however, the

client is also authenticated i.e. the server authenticates the identity of the client. TLS enables three
primary methods for client authentication:

- Aclient certificate,

- TLS-PSK (pre-shared key, not discussed here), or,

- Secure Remote Password (SRP) protocol.

Client Certificates
The use of client certificates presents similar challenges to server certificates. Users are unlikely to

pay for a certificate, particularly since it reveals information about their true identity, and many
users want trust based around an online identity, disconnected from their physical identity. Thus,
one solution is for the hub to issue certificates to clients upon registration, which are signed by the
hub.

The method of issuing a certificate is a question of infrastructure, but one option is that when a user
in a server-authenticated TLS secure session is registered on the hub, the hub generates a certificate
and sends it to the user via a new ADC protocol message (e.g. CRT, for certificate). Since a secure
session already exists, the certificate cannot be intercepted, and the only issue is that the user being
registered may not have truly been the intended user. Another possible method is for a web site to
send the generated certificate to an email address, which the user must then install in their client
software; though, of course, email is unencrypted, and thus the certificate would be vulnerable to
capture by an opportunistic eavesdropper.

An alternative is for the client to self-sign its certificate. However, this is seen as much less ideal, and
therefore an alternative is proposed: the use of the SRP protocol.

Secure Remote Password (SRP) Protocol
SRP allows a user to authenticate themselves to the server without the use of a trusted third-party,

such as a certificate authority (CA), whilst being resistant to the dictionary attacks that many
challenge-response mechanisms are vulnerable to®. The use of SRP in TLS authentication may be for
both client and server authentication®; however, in this proposal it is only used for client
authentication, with certificates still used for server authentication.

” URN, containing hash: http://en.wikipedia.org/wiki/Magnet_URI_scheme#URN.2C_containing_hash_.28xt.29
® The Uniform Resource Name (URN) Syntax: http://tools.ietf.org/html/rfc2141

° The SRP Authentication and Key Exchange System v3: http://tools.ietf.org/html/rfc2945

19 Using SRP (v6) for TLS Authentication: http://tools.ietf.org/html/rfc5054



Document Version: 0.03

Since SRP uses both a user name and password, there is room for discussion as to whether the user
name should be the user’s Client ID (allowing them to change their nick name and IP address), or if it
should be their nick name (allowing them to change their Client ID and IP address). There are merits
to either scheme, and the extension may allow both, with the specific method used to be given to
the client during the registration process. It is envisioned that supplying the user name parameter
will be invisible to the user, with only the password needing to be entered (if it is not retrieved from
a secure store on the user’s system). Hub software should limit the rate of authentication attempts
from a particular IP address or against a particular user name.

It should be noted that when a secure session has not already been established, the user name is
sent in clear text. Thus, it may be desirable to establish a server-authenticated connection, and then
renegotiate an SRP-authenticated connection with the handshake now protected by the first
connection. This should be agreed upon for compatibility between implementations.

Choosing an Authentication Method
The methods described above may be represented as series of escalating levels of security.

e Server-authentication w/ self-signed certificates + KeyPrint

e Server-authentication w/ CA-signed certificates + KeyPrint

e Server-authentication + self-signed client certificates

e Server-authentication + SRP client authentication

e Server-authentication + hub-signed client certificates

e Server-authentication + CA-signed client certificates

The recommended methods are (i), (iv) and (v):

- Method (i), server-authentication using self-signed certificates and KeyPrint, should be used
for basic secure hubs.

- Method (iv), server-authentication (server certificates and KeyPrint) with SRP client
authentication, enables a familiar username/password scheme without the overhead of
generating and installing client certificates.

- Method (v), server-authentication with hub-signed client certificates, is for environments
where the hub owner places a strong emphasis on trust, though it is more difficult for hub
software to implement, and poses certificate-management issues.

Although method (vi) is the most secure, many users may be uncomfortable with the use and cost of
CA-signed certificates.



Document Version: 0.03

Client-to-Client Connections

The establishment of secure sessions between clients enables peer-to-peer communications,
unobservable by other members of the hub, or external parties. The fact that ADC uses a client-
server model for client-to-hub and peer-to-peer connections means that similar concepts apply for
the implementation of a security model. However, since each client has an established secure
session with the hub, this may be used to facilitate authentication.

In a server-authenticated client-server model, the server is believed to be trustworthy by the client.
Thus, when the client X wishes to initiate a secure session with client Y, X can assume that the hub
will use the secure channels it holds with X and Y to relay this request to the intended recipient, Y.
This means that X and Y are both implicitly authenticated to one-another, via the trusted hub.

This potentially means the hub could be used to facilitate the exchange of symmetric keys for
message encryption; however, the TLS protocol provides algorithm support negotiation and message
authentication, which need not be reinvented by an alternative method. Thus, the proposed method
involves each client on a secure hub sharing the KeyPrint of their public key with all hub users via the
INF message. A KP parameter is added to the INF message, containing the same
‘urn:algorithm:base32(hash)’ form as for hub addresses e.g.:

INF KPurn:tiger:USNVXMWXL5MSQHRAITYJITVFY75RUGIDCBQ3BZQ
When a client initiates a TLS connection with another client, each client..

Use TLS-PSK. http://tools.ietf.org/html/rfc4279



Document Version: 0.03

Appendix I - Securing a network

Imagine a hub, adc://myhub.com:1234, which has an owner H, and users X, Y and Z. The users X and
Y become concerned that the hub is insecure, and lobby H to move to a secure protocol. The secure
protocol lobbied by X and Y involves a secure connection being established prior to any protocol-
specific communication.

The problem (separate ports)
H agrees to move the hub to a secure protocol; however, since Z was absent from the conversation,
H sees some potential issues:

1) To enable Z to still connect to the hub, H must use an additional port (e.g. 4321) for the
secure connection. In addition, H must run two instances of the hub software, the legacy
hub informing connecting users (i.e. Z) the address of the secure hub, and the new secure
hub.

2) Users connecting to the secure hub must run client software which supports the secure
protocol. If a user attempts connecting to the secure hub without security-enabled client
software, there is no way for the hub to inform the user how to obtain such software, it
simply rejects the connection attempt.

3) To indicate to users that it is secure, the secure protocol specifies that the hub address must
now use the ‘adcs’ URL scheme, rather than ‘adc’. This means that even if H decides to
maintain the hub on port 1234, and exclude Z from the hub (or informs Z of the new address
by other means); users X and Y must still change the address of the hub in their client
software to adcs://myhub.com:1234.

The alternative (upward negotiation)

H then proposes a different secure protocol to X and Y. This protocol uses the same security
mechanism as proposed by X and Y; however, the secure session is established after feature
negotiation by the insecure protocol. This means that the hub can remain on the same address and
port; however, the hub will now announce to connecting clients that it supports the secure protocol
and, if the client supports the protocol too, a secure session may be established.

Note that support for the secure protocol by both the client and hub does not mean that a secure
session must be established. The hub may require a secure session, and thus initiate it, or the client
may request a secure session, and the hub may initiate it at the client’s request. If the client requests
a secure session and the hub ignores or denies the request, then the client may choose to terminate
the connection if it requires a secure session. If the hub initiates a secure session and the client
ignores the initiation, then the hub may terminate the connection.

If a hub enables clients to establish a secure session, it should force all clients to establish a secure
session, at threat of session-termination. This is because if both secure and insecure sessions are
allowed, information which one client sends securely becomes insecure when sent to an insecure
client.

Issues

The alternative method allows an eavesdropper to detect the protocol being used in the connection.
A consequence of this is that a network operator (e.g. Internet service provider or local area network
administrator) may detect the protocol is in use and block the connection.



